Synthesis, characterization, and testing of supported Au catalysts prepared from atomically-tailored Au38(SC12H25)24 clusters.

نویسندگان

  • Sarthak Gaur
  • Jeffrey T Miller
  • Daniel Stellwagen
  • Ashwin Sanampudi
  • Challa S S R Kumar
  • James J Spivey
چکیده

Nearly monodispersed Au(38)(SC(12)H(25))(24) clusters (1.7 ± 0.2 nm) were synthesized using a modified Brust process while utilizing a "thiol etching" approach for the ligand exchange. HRTEM, MALDI, FTIR, and XAS analysis confirmed the formation of the 38-atom clusters in solution. This solution was used to impregnate a microporous TiO(2) support to give 0.7% Au(38)/TiO(2) catalyst. Subsequent drying in air and treatment with H(2)/He at 400 °C removed most of the sulfur ligands, and also increased the Au cluster size to 3.9 ± 0.96 nm. XPS and EXAFS analysis of this supported catalyst showed trace levels of residual sulfides, apparently located at the Au-TiO(2) interface. CO oxidation tests on these supported clusters show an activation energy and range of TOFs comparable to those reported by others. These results suggest that supported Au clusters of controllable size can be prepared with this thiol-ligated solution-based method, providing a new approach to the synthesis of these catalysts.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ligand effects in catalysis by atomically precise gold nanoclusters

Atomically precise gold nanoclusters are ideal model catalysts with well-defined compositions and tunable structures. Determination of the ligand effect on catalysis requires the use of gold nanoclusters with protecting ligands as the only variable. Two isostructural Au38 nanoclusters, [Au38(L)20(Ph3P)4]2+ (L = alkynyl or thiolate), have been synthesized by a direct reduction method, and they h...

متن کامل

Chemically induced magnetism in atomically precise gold clusters.

Comparative theoretical and experimental investigations are reported into chemically induced magnetism in atomically-precise, ligand-stabilized gold clusters Au25 , Au38 and Au55 . The results indicate that [Au25 (PPh3 )10 (SC12 H25 )5 Cl2 ](2+) and Au38 (SC12 H25 )24 are diamagnetic, Au25 (SC2 H4 Ph)18 is paramagnetic, and Au55 (PPh3 )12 Cl6 , is ferromagnetic at room temperature. Understandin...

متن کامل

Preparation of a Novel Super Active Fischer-Tropsch Cobalt Catalyst Supported on Carbon Nanotubes

The potential of carbon nanotubes (CNT) supported cobalt catalysts for Fischer-Tropsch (FT) reaction is shown. Using the wet impregnation method cobalt on carbon nanotubes catalysts were prepared with cobalt loading varying from 15 to 45 wt. %. The catalysts are characterized by different methods including: BET physisorption, X-ray diffraction, hydrogen chemisorption, and temperature-progra...

متن کامل

KCl Promoted Cobalt-iron Nanocatalysts Supported on Silica: Catalytic Performance and Characterization in Fischer-Tropsch Synthesis

The SiO2 supported cobalt-iron nano catalysts were prepared by the sol-gel method. This research investigated the effects of (Co/Fe) wt.%, different Co/Fe ratio at different temperature and loading of KCl wt.% for Fisher-Tropsch synthesis (FTS). The results were showed that the catalyst containing 50 wt.% (Co/Fe)/SiO2 (Co/Fe ratio is 70/30) which promoted with 0.6 wt.% KCl is an optimal nano ca...

متن کامل

Kinetic evaluation of highly active supported gold catalysts prepared from monolayer-protected clusters: an experimental Michaelis-Menten approach for determining the oxygen binding constant during CO oxidation catalysis.

Thiol monolayer-protected Au clusters (MPCs) were prepared using dendrimer templates, deposited onto a high-surface-area titania, and then the thiol stabilizers were removed under H2/N2. The resulting Au catalysts were characterized with transmission electron microscopy, X-ray photoelectron spectroscopy, and infrared spectroscopy of adsorbed CO. The Au catalysts prepared via this route displaye...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 14 5  شماره 

صفحات  -

تاریخ انتشار 2012